Ferritin and the response to oxidative stress.

نویسندگان

  • K Orino
  • L Lehman
  • Y Tsuji
  • H Ayaki
  • S V Torti
  • F M Torti
چکیده

Iron is required for normal cell growth and proliferation. However, excess iron is potentially harmful, as it can catalyse the formation of toxic reactive oxygen species (ROS) via Fenton chemistry. For this reason, cells have evolved highly regulated mechanisms for controlling intracellular iron levels. Chief among these is the sequestration of iron in ferritin. Ferritin is a 24 subunit protein composed of two subunit types, termed H and L. The ferritin H subunit has a potent ferroxidase activity that catalyses the oxidation of ferrous iron, whereas ferritin L plays a role in iron nucleation and protein stability. In the present study we report that increased synthesis of both subunits of ferritin occurs in HeLa cells exposed to oxidative stress. An increase in the activity of iron responsive element binding proteins in response to oxidative stress was also observed. However, this activation was transient, allowing ferritin protein induction to subsequently proceed. To assess whether ferritin induction reduced the accumulation of ROS, and to test the relative contribution of ferritin H and L subunits in this process, we prepared stable transfectants that overexpressed either ferritin H or ferritin L cDNA under control of a tetracycline-responsive promoter. We observed that overexpression of either ferritin H or ferritin L reduced the accumulation of ROS in response to oxidant challenge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress.

The global increase in transcription of cytoprotective genes induced in response to oxidative challenge has been termed the antioxidant response. Ferritin serves as the major iron-binding protein in nonhematopoietic tissues, limiting the catalytic availability of iron for participation in oxygen radical generation. Here we demonstrate that ferritin is a participant in the antioxidant response t...

متن کامل

The mechanism of iron homeostasis in the unicellular cyanobacterium synechocystis sp. PCC 6803 and its relationship to oxidative stress.

In this article, we demonstrate the connection between intracellular iron storage and oxidative stress response in cyanobacteria. Iron is essential for the survival of all organisms. However, the redox properties that make iron a valuable cofactor also lead to oxidative interactions, resulting in the formation of harmful radicals. Therefore, iron accumulation in cells should be tightly regulate...

متن کامل

Heme oxygenase 1 mediates an adaptive response to oxidative stress in human skin fibroblasts.

Oxidative stress of human skin fibroblasts by treatment with ultraviolet A (UVA) radiation has been shown to lead to an increase in levels of the heme catabolizing enzyme heme oxygenase 1 [heme, hydrogen-donor:oxygen oxidoreductase (alpha-methene-oxidizing, hydroxylating), EC 1.14.99.3] and the iron storage protein ferritin. Here we show that human skin fibroblasts, preirradiated with UVA, sust...

متن کامل

Role of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line

Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...

متن کامل

Situations Leading to Oxidative Stress in Dairy Cattle

Free radicals are normally produced by living organism, at controlled production rate they perform physiological functions as signal transduction molecules. However, situations leading to an overproduction that surpasses antioxidant capacity creates oxidative stress. Consequently, damage to the cell membrane, protein, DNA and cell death are observed. Dairy cattle are susceptible to oxidative st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 357 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2001